123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- import time
- from typing import Any, Callable
- from psycopg import Cursor
- from psycopg.sql import (
- SQL,
- Literal,
- )
- from dateutil.parser import parse as parse_time
- import pandas as pd
- from .TransactionView import (
- get_table_statement,
- get_transactions_statement,
- get_session_transactions_statement,
- NON_IDENTIFIER_COLUMNS,
- )
- from .PriceView import(
- get_historic_prices_statement,
- )
- display_map = {
- 'ts': lambda x: f"{time.strftime('%Y-%m-%d %H:%M', (x.year, x.month, x.day, x.hour, x.minute, 0, 0, 0, 0))}",
- '%d/%m/%y %_I%P': lambda x: f"{time.strftime('%d/%m/%y %_I%P', (x.year, x.month, x.day, x.hour, x.minute, 0, 0, 0, 0))}",
- 'price': lambda x: f'{x:.4f}',
- 'quantity': lambda x: f'{x:.2f}' if x is not None else None,
- 'organic': lambda x: 'yes' if x else 'no',
- 'tags': lambda x: '' if not x else x,
- }
- display_mapper: Callable[
- [Any, str], str
- ] = lambda data, name: display_map[name](data) if name in display_map else data
- def cursor_as_dict(cur):
- _col_idx_map=dict(map(lambda col: (col[1].name, col[0]), enumerate(cur.description)))
- for row in map(lambda row, _map=_col_idx_map: {
- name: row[i] for name, i in _map.items()
- }, cur.fetchall()):
-
- yield row
- def get_data(cursor, statement, display=None):
- cursor.execute(statement)
- if display is not None:
- yield from map(lambda x: dict(
- map(lambda k: (k, display(x[k], k)), x)
- ), cursor_as_dict(cursor))
- else:
- yield from cursor_as_dict(cursor)
- def get_session_transactions(cursor, statement, display):
-
-
- df = pd.DataFrame(get_data(cursor, statement, display))
- if df.empty:
- return ''
- return df.drop(labels=[
- 'id', 'ts', 'store', 'code', 'quantity',
- ], axis=1).to_string(header=[
- 'Description', 'Volume', 'Unit', 'Price', '$/unit', 'Total',
- 'Group', 'Category', 'Product', 'Organic', 'Tags'
- ], justify='justify-all', max_colwidth=60, index=False)
- def record_matches(record, strict=None, **kwargs):
- strict = [ x.lower() for x in (strict or []) ]
- for key, query, candidate in (
- (k.lower(), f"{v}".lower(), f"{record[k]}".lower()) for k, v in kwargs.items()
- ):
- if not query:
- continue
- if key in strict and query != candidate:
- return False
- for term in query.split():
- if term not in candidate:
- return False
- return True
- def unique_suggestions(cur, statement, name, display, exclude=NON_IDENTIFIER_COLUMNS, **kwargs):
- exclude = filter(
- lambda x: x != name or name == 'ts',
- exclude,
- )
- [ kwargs.pop(k) for k in exclude if k in kwargs]
- items = suggestions(cur, statement, name, display, exclude=exclude, **kwargs)
- ret = sorted(set(map(lambda x: x[name], items)))
- tables = {
- 'product',
- 'category',
- 'group',
- 'unit',
- 'store',
- 'tags',
- }
- if len(ret) > 0 or name not in tables:
- return ret
- items = (i for i in filter(lambda x: record_matches(x, **{ name: kwargs[name] }) if name in kwargs else True,
- get_data(cur, get_table_statement(name), display)))
- ret = sorted(set(map(lambda x: x[name], items)))
- return ret
- def suggestions(cur, statement, name, display, exclude=NON_IDENTIFIER_COLUMNS, **kwargs):
- exclude = filter(
- lambda x: x != name or name == 'ts',
- exclude,
- )
- [ kwargs.pop(k) for k in exclude if k in kwargs]
- yield from filter(lambda x: record_matches(
- x, strict=[ k for k in kwargs if k != name ], **kwargs
- ), get_data(cur, statement, display))
- def get_insert_product_statement(product, category, group, unit):
- unit_sql = f', $unit${unit}$unit$' if unit else ''
- return f'CALL insert_product($prod${product}$prod$, $category${category}$category$, $group${group}$group${unit_sql})'
- class QueryManager(object):
- def __init__(self, cursor: Cursor, display: Callable[
- [Any, str], str
- ]):
- self.display = display
- self.cursor = cursor
- def get_historic_prices_data(self, unit, sort=None, product=None, category=None, group=None, tag=None, organic=None, limit=None):
- statement = get_historic_prices_statement(unit, sort=sort, product=product, category=category, group=group, tag=tag, organic=organic, limit=limit)
- data = get_data(self.cursor, statement)
- return pd.DataFrame(map(lambda x: dict(
- map(lambda k: (k, self.display(x[k], k)), x)
- ), data))
- def get_session_transactions(self, date, store):
- statement = get_session_transactions_statement(
- parse_time(date), store, full_name=True, exact_time=True
- )
- return get_session_transactions(self.cursor, statement, self.display)
- def unique_suggestions(self, name, **kwargs):
- statement = get_transactions_statement(name, **kwargs)
- return unique_suggestions(self.cursor, statement, name, self.display, **kwargs)
- def insert_new_product(self, product, category, group, unit):
- self.cursor.execute(get_insert_product_statement(product, category, group, unit))
- def get_preferred_unit(self, product):
- self.cursor.execute(SQL("""SELECT
- units.name AS preferred_unit
- FROM products
- JOIN units ON unit_id = units.id
- WHERE products.name = {product}""").format(product=Literal(product)))
- res = list(cursor_as_dict(self.cursor))
- if len(res) == 0:
- return None
- assert len(res) == 1
- return res[0]['preferred_unit']
|